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Abstract—The COVID-19 related lockdown measures offer a
unique opportunity to understand how changes in economic
activity and traffic affect ambient air quality, and how much
pollution reduction can the society offer through digitalization
and mobility-limiting policies. In this work, we estimate pollution
reduction over the lockdown period by using the measurements
from ground air pollution monitoring networks, training long-
term prediction models and comparing their predictions to
measured values over the lockdown month. We show that our
models achieve state-of-the-art performance and evaluate up
to -29.4 %, -28.1 %, and -52.8 %, change in NO2 in Eastern
Switzerland, Beijing and Wuhan respectively. Our reduction
estimates take local weather into account. What can we learn
from pollution emissions during lockdown? The lockdown period
was too short to train meaningful models from scratch. We
therefore use transfer learning to update only mobility-dependent
variables. We show that the obtained models are suitable for the
analysis of the post-lockdown periods and capable of estimating
the future air pollution reduction potential.

I. INTRODUCTION

Air quality is of vital importance to human health as has
been shown in numerous medical studies [1], [2], [3]. Further-
more, air pollution leads to enormous economic losses [4] and
its reduction is particularly important in overpopulated urban
areas. In the context of the current pandemic, recent studies
show that long-term exposure to air pollutants such as PM2.5
(particulate matter of diameter less than 2.5 micrometers)
and NO2 (nitrogen dioxide) increases human susceptibility
to SARS-CoV-2 [5], [3] and contributes to higher fatality
rates [6], [7]. Lockdown measures of varying duration and
strictness in response to COVID-19 have shown to be effective
to slow down the virus spread in many countries. At the
same time, reduced mobility, working from home, accelerated
digitalization and e-commerce made researchers wonder about
the pollution reduction potential also in the context of global
warming and while preserving the basic operations of cities
and counties.

Lockdowns provide a unique and valuable opportunity to
analyze the air pollution reduction patterns. Fig. 1 presents a
comparison of measured air pollution in Wuhan, China over
the same period of time in 2019 and 2020. Due to significantly
reduced human activities, such as traffic, the concentrations
of NO2 drop to low and stable levels during the lockdown
compared to the same period in 2019. Although numerous
studies estimate pollution reduction during lockdown in var-
ious countries [8], [9], [10], [5], the results mostly represent
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Fig. 1: NO2 measured in 2019 and 2020 from Jan 1 to June
30 in Wuhan, China. Green zones show the lockdown period
from Jan 23 to Apr 27, 2020.

aggregated differences to various baselines. A detailed analysis
of the lockdowns are difficult due to their short duration and,
thus, scarceness of the representative data. This paper proposes
a modelling framework that enables such analysis, and gives
arguments for its usefulness in broader contexts.

Today, air pollution is measured by networks of governmen-
tal stations, satellite images [11], IoT devices [12], passive
samplers, crowdsourcing campaigns, etc. Real-time air quality
information from public [13] and private [14] stations can of-
ten be found online in many areas around the world. Numerous
models were developed aiming at predicting short-term [15]
and long-term pollution exposure [16] ranging from country-
scale [17] to city-scale [18], [19], [20]. Although there is a
large body of literature investigating the relationship between
industry, traffic and air pollution, it is still not well understood
how changes in economic activity and traffic affect ambient
air quality [21].
Challenges. COVID-19 related lockdowns offer a chance to
build more knowledge in this area. However, there are numer-
ous challenges to be solved. (1) Recent studies investigating
the impact of the lockdown measures on air pollution are not
correcting for the influence of weather conditions on air pol-
lution, which can considerably distort the obtained estimates.
(2) Strict initial lockdown measures took place only for a
few weeks in countries around the world, which complicates
learning a reasonable model for the lockdown period. Later
lockdowns incorporated a different set of measures and thus
can not be used to enhance the training data. Solving the first
challenge helps to accurately compute the local pollution re-
ductions over the lockdown period and understand their spatio-
temporal variability. Solving the second challenge enables
learning from the lockdown experience by computing different



scenarios, such as estimating the air pollution reduction due
to a partial back-to-normal regime or predicting pollution pat-
terns if the lockdown would have happened during a different
season or if its duration would have been extended.
Contributions and road-map. In this paper, we solve the
above challenges by building the first long-term predictive
models for the lockdown period (LD models). We use the
following pipeline to achieve the goal: (1) Using historical data
of several years before the lockdown, we train long-term pre-
lockdown (pre-LD) models using Generalized Additive Mod-
els (GAMs) and show that they achieve comparable accuracy
to the long-term models described in the literature. The pre-
LD models are used to predict air pollution for the lockdown
period while taking weather conditions into account. (2) The
predictions are then compared to the actually measured values
over the same period. (3) As next, we train weather-aware
LD models using scarce lockdown data. We fix environmental
dependencies in the models and use transfer learning to
compute a new fit solely for the daytime dependent parameters.
By cross-validation, we show that scarce data over 4 weeks
of lockdown are sufficient to train accurate LD models for
NO2. We use both model classes to analyze the post-lockdown
data. Our approach is evaluated on three data sets from China
and Switzerland. A more detailed analysis, also for Wuhan
and Lower Austria, is available in the technical report [22].
The code is publicly shared on GitHub1. Sec. II summarizes
a rapidly growing body of related works on modelling air
pollution exposure.

II. RELATED WORK

Big data has a huge impact on modelling environmental
processes [23]. In contrast to short-term predictive models
which increasingly leverage deep learning methods, long-
term environmental predictions are largely rooted in scientific
theory, which is one of the key reasons for their predictive
power [24]. Below we summarize related works on data-
driven air pollution models and discuss the challenges we face
when applying these to estimating pollution reductions due to
COVID-19 lockdown measures.
Long-term air pollution models. Classical dispersion mod-
els [25] are widely used for air quality mid-term and long-
term predictions. These models identify the root cause of air
pollution from chemical, emission, climatological factors and
combinations thereof. A fitted model can then be used to
understand the impact of each of these factors in isolation.
Over the past years, GAMs have been frequently used to model
air pollution and analyze the learned dependencies [18], [26],
[27], [28], e.g., to estimate the impact of weather on NO2,
PM and O3 for Melbourne [27]. Belusic et al. [28] analyze
the impact of meteorological variables numerically in their
models and explain 45% of variance in CO, 14% in SO2, 25%
in NO2 and 24% in PM10. In this work, we apply the model
selection procedure in [16] to find the best hyperparameters

1https://github.com/johanna-einsiedler/covid-19-air-pollution

and leverage the additive property of GAMs to tackle data
scarcity issue when training LD models.
Short-term air pollution models. Recent models for short-
term air quality prediction range from a few hours to a
few days ahead and mainly rely on deep learning meth-
ods. FFA [29] forecasts air quality from meteorological and
weather inputs. DeepAir [30] simultaneously considers indi-
vidual and holistic influences. To further improve the model
capacity, GeoMAN [31] used a three stage attention model
learned from local features, global features and temporal
geo-sensory time series. Lin et al. [32] represent the spatial
correlations in a graph with automatically selected important
geographic features that affect PM2.5 concentrations, and use
these features to compute the adjacency graph for the model.
To conquer the challenge of sample scarcity, Chen et al. [33]
proposed a multi-task approach to learn the representations
from the relevant spatial and sequential data, as well as to build
the correlation between air quality and these representations.
Zhang et al. [15] found that local fine-grained weather data is
helpful to predict air quality. These deep learning approaches
focus on very short time horizons significantly shorter than
the duration of COVID-19 related lockdowns. For this reason,
this paper relies on GAMs as our basic modelling approach.
Transferable models. Transfer learning [34] promises to light-
retrain a model in order to adapt the parameters to a changed
setting and requires little data. Pollution models are usually not
spatially transferable, e.g., across cities and countries, because
the learned dependencies are location-specific and policies
may vary substantially across distant areas. Also temporal
transferability of learned dependencies is difficult since land-
use, environmental characteristics and policies may change
over time. Thus, a few pollution model transfer examples from
the literature extensively leverage prior expert knowledge or
make strong assumptions about the structure of the source
and the target domains such as shared similarities and other
transferable structures [35], [36]. This paper makes use of
an abrupt change of economic activity within the lockdown
period, whereas land-use, environmental characteristics and
policies remained essentially the same. This makes temporal
model transfer possible and feasible.
Impact of COVID-19 on air quality. Lockdown measures in
response to COVID-19 pandemic offer a unique opportunity
to improve prediction of policy impacts reinforcing work-
from-home and changing to low-emission mobility vehicles.
The study in [37] assessed NO2 reduction based on satellite
imagery by NASA and ESA in multiple COVID-19 epicenters.
A similar assessment of other areas is provided in [11]. The
relationship between air pollution and lockdown measured was
studied in [9] using satellite data and ground sensors. The
weather dependency is modelled as a simple linear function. A
recent report [38] estimates NO2 reduction for major European
cities during spring lockdowns when compared to previous
years. Building a good predictive model for the lockdown
period is challenging due to a short lockdown duration of only
several weeks in most countries. In contrast to all previous
efforts, we are one of a few to provide a weather and season-
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Country Class Local situation # stations

East Switzerland
No Traffic Located offside the road 1

Low Traffic ≤30,000 VPD 3
High Traffic >30,000 VPD 1

China

Urban Urban Beijing, parks 12
Rural Countryside, parks 11

Suburban Polluted transfer zones 7
Road Urban, high traffic 5

TABLE I: Classification of stations in Switzerland by #vehi-
cles per day (VPD) and in China by location type for NO2.

compensated estimates of pollution reduction over the lock-
downs in 20202, and we are the first to use transfer learning to
train a long-term model for the COVID-19 lockdown period.

III. DATA SETS

This section describes the data sets we use to train and
test the pre-LD and LD models for China and Switzerland.
We also shortly describe the progress and the duration of
the lockdown measures. Note that the investigated countries
implemented very different air pollution reduction policies
over the years. Also the severity of the lockdown measures
varied considerably throughout 2020. Both facts highlight
robustness of the modelling approach presented in the paper.
Eastern Switzerland. Air quality data and weather data for
Eastern Switzerland are published by Ostluft3. The stations
measure main air pollutants along with meteorological data.
Stations are spread across the area, although bigger cities
including Zurich and St. Gallen have more than one station at
representative locations. We use the available 5 stations that
provide data on NO2 and weather conditions including wind
direction over the period from Jan 1, 2016 to Feb 5, 2021.
The initial lockdown in Switzerland took place between Mar
16 and Apr 27, 2020 [39] and was much stricter than later
measures. According to the traffic conditions, we classify the
stations into three groups4: No Traffic, Low Traffic and High
Traffic. The details are summarized in Table I.
Beijing and Wuhan. We collect air quality data5,from 35
stations in Beijing and 10 stations in Wuhan from Jan 1, 2016
to Feb 5, 2021. Our scripts also fetch meteorological data6 for
the same locations. The initial lockdown periods in Beijing
and in Wuhan were between Jan 23 and Apr 8, 2020. Further
lockdowns were considerably lighter or affected only local
areas. Air quality stations in Beijing have been categorized
into four classes by the local authorities as shown in Table I:
Road, Rural, Suburban and Urban.

In all considered areas, the available data has hourly time
resolution. We use daily aggregates to train and validate our
models. Note that the lockdown severity in Wuhan was the
highest and in Switzerland the lowest.

2A study based on Random Forest models reporting similar results for
Switzerland can be found here: https://bit.ly/2RX2Oml visited 2020-10-26.

3https://www.ostluft.ch/ visited 2021-01-25
4https://www.ostluft.ch/index.php?id=19 visited 2021-01-25
5https://quotsoft.net/air/ visited 2020-10-12
6https://darksky.net/ visited 2021-02-05

IV. LONG-TERM PREDICTIVE MODELS

This section describes the process of training a pre-LD
model to predict air pollution if no lockdown would have
happened. We rely on a model-based approach, since the pre-
diction time horizon should cover the whole lockdown period
of several weeks and thus the trained models should have
sufficient predictive power for long-term predictions. We adopt
GAMs that have successfully been used to model air pollution
in the past [18]. In addition, we leverage optimizations [16],
[40] and statistical tests to ensure model robustness and high
performance as described below. As air pollution is highly
sensitive to the local environment, it is necessary to fit a
separate model for each station.

A. Generalized Additive Models (GAMs)

In GAMs, the impact of the predictive variables is captured
through non-parametric smooth functions. These are summed
up and related to the response variable via a link function:

g(E(Y )) = s1(x1) + s2(x2) + ...+ sp(xp), (1)

where E(Y ) is the expected value of the dependent variable Y ,
g(·) is a link function between its argument and the expected
value to the predictor variables x1, ..., xp, and s1(·), ..., sp(·)
denote non-parametric smooth functions. The statistical distri-
bution of the concentration of air pollutants, similarly to many
other environmental parameters, closely follows a log-normal
distribution [41]. A logarithmic link function g(·) has been
chosen similarly to [18].

B. Explanatory Variables

The explanatory variables comprise meteorological param-
eters: wind speed (WS), wind direction (WD), precipitation
(P), temperature (T), dew point (DP) and relative humidity
(RH). To ensure an accurate feature representation of the wind
direction, the polar coordinates are transformed into cartesian
coordinates: WDx = sin

(WD
360 · 2π

)
,WDy = cos

(WD
360 · 2π

)
.

Furthermore, an additional variable is created by applying
principal component analysis (PCA) on precipitation, humid-
ity, dew point and temperature. PCA is a dimensionality
reduction method to reduce the mutual correlations between
included variables. The first component is added to the set
of explanatory variables as PCA. We augment the set of
explanatory variables with their lagged versions for one, two
and three days. Wind speed (WS) and PCA are augmented
with their respective rolling averages over the previous weeks.
In addition, a categorical variable for month (M) and a variable
for day of the year (DY) is included to account for seasonal
patterns.

C. Model Selection Algorithm

For the selection of the model covariates we use a for-
ward elimination procedure. The algorithm closely follows the
framework used in similar research designs [16], [40]. Two
key indicators are used for the model selection: the Akaike
Information Criterion (AIC) [42] and the Variance Inflation
Factor (VIF) [43]. The AIC is an estimate of the in-sample

https://bit.ly/2RX2Oml
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https://www.ostluft.ch/index.php?id=19
https://quotsoft.net/air/
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Variable Abbr. Switzerland Beijing Wuhan
name NO2 PM10 NO2 PM2.5 NO2 PM2.5

Wind speed WS 4 5 32 32 5 -
Wind dir. X WDx 6 8 18 21 8 10
Wind dir. Y WDy 3 4 7 7 11 11
Precipitation P - - - - - -
Temperature T 2 5 1 - - -
Rel. humidity RH 2 3 21 9 11 9
Month M - - - - - 1
Day of year DY 2 - 24 3 4 8
Dew point DP 0 - 7 1 1 -
PCA PCA 7 - 26 21 4 9
Weekday D 1 2 - 2 1 -

TABLE II: # stations where the corresponding explanatory
variable was chosen by the model selection algorithm.

prediction error that is commonly used to compare the quality
of different statistical models for a given data set [44]. The
aim of the indicator is to regularize the model by balancing the
goodness-of-fit against model complexity and thereby avoiding
both underfitting and overfitting. It is calculated as AIC =
2k − ln(l), where k is the number of model parameters, and
l denotes the maximum value of the model likelihood.

The VIF measures the degree of collinearity between inde-
pendent variables. Collinearity inflates the variance of regres-
sion parameters and may lead to wrong identification of the
relevant predictors [45]. It is calculated as VIF = 1/(1−R2

i ),
where R2

i is the coefficient of determination of the regression
of the i-th variable over all other explanatory variables.

Model selection algorithm. The algorithm closely follows
[16] and executes as follows: (1) For each explanatory variable
we fit a GAM model comprising just this single variable. The
model with the lowest AIC is selected. (2) We iteratively
search for the next best variable to be added to the model.
Variables with V IF > 2.5 are filtered out. Among the
constructed candidate models, the one with the lowest AIC
is chosen. The threshold of 2.5 corresponds to the coefficient
of determination R2 = 0.6. This conservative setting was
deemed appropriate taking into account collinearity of weather
variables. Scientific papers dealing with weather data often
adopt the threshold of 2.5 [16], whereas higher cut-off values,
e.g., 4, 5 and 10, are also found in the literature [46], [40]. Step
(2) is repeated until the addition of any further explanatory
variable leads to an increased AIC.

The results of the model selection algorithm for all stations
in China and Switzerland are shown in Table II. The value
in each cell represents the frequency of the corresponding
explanatory variable being selected by the algorithm into
a GAM model. Ultimately, the Weekday variable (D) was
explicitly added to all models to take into account traffic-
induced weekly pollution periodicity. This technique has been
used in a similar research design to analyse long-term air
pollution trends [16]. We adopt this technique in order to later
be able to learn the LD model from the pre-LD model using
transfer learning.

D. Model Validation

We assess the quality of the trained pre-LD models using
cross-validation. The root-mean squared error (RMSE) is
used to assess prediction quality. The results for NO2 for
Switzerland and Beijing are exemplified in Fig. 2. We train
models for different stations on 3, 6, 9, 12, 18 and 24 months
of data prior to a chosen date and test these on the data for
the subsequent month. The chosen cut-off date is the start
of each month in the year 2019. We observe that up to two
years of data is necessary to train the pre-LD GAM models of
acceptable quality. Further evaluation is based on the pre-LD
models trained on two years of data preceding the lockdown
in each region.
Eastern Switzerland. In cross-validation, the models have an
average RMSE of 7.2 for NO2 and 5.0 for PM10. Barmpadi-
mos et al. [16] use GAMs fitted on detailed weather data to
analyse PM10 trends in Switzerland. Their models fitted on 16
years of data reach a RMSE between 2.2 and 3.2 for PM10,
see Table III. We conclude that the quality of the obtained
GAM models trained on less data is only marginally worse
compared to the published results.
Beijing. For the stations in Beijing the average RMSE for
PM2.5 in cross validation is 29.4. Zhang et. al. [15] compare
different models for short-term (between 6 h and 24 h) PM2.5
predictions in Beijing over 2016-2018. The RMSE of these
short-term models ranges between 26.9 and 44.1. Our long-
term models have only slightly worse performance compared
to the state-of-the-art short-term deep learning models. In con-
trast to these short-term models, our GAMs need significantly
more (two years compared to a few days) training data to
achieve acceptable accuracy. We note that historical weather
data is often publicly available, which makes model training
on large historical data sets possible.

In the next section, we use the trained pre-LD models to
estimate pollution reduction due to the COVID-19 lockdown
measures. We mainly showcase the results for NO2. Further
analysis for PM10 and PM2.5 data is available in our technical
report [22].

V. IMPACT OF COVID19 ON AIR POLLUTION

The most common approach to estimate the impact of
COVID-19 intervention measures on air pollution is based
on the comparison of the measured values over the lockdown
period in 2020 to the same time interval in 2019. However, air
pollution is known to depend on weather conditions, seasonal
as well as policy updates that prohibit an accurate estimation
of pollution reductions due to lockdowns. In this section
we estimate pollution reduction while taking weather-related
parameters into account.

Local weather highly impacts the daily change of air
pollution. In Fig. 3, we compare weather conditions during
the lockdown period in 2020 and during the same period in
2019. We observe that in Switzerland, the lockdown weather
was warmer, dryer, and less windy than in 2019. Similar
observations apply to Beijing and Wuhan. In addition, we
notice a change in the wind direction, which is a significant
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Fig. 2: pre-LD model performance in cross-validation using different lengths of the train data.

Model Measure
Switzerland Beijing Wuhan

NO2 PM10 NO2 PM2.5 NO2 PM2.5
µg/m3 µg/m3 µg/m3 µg/m3 µg/m3 µg/m3

pre-LD RMSE 7.16 4.99 13.38 29.41 14.61 22.37
R2 0.69 0.54 0.60 0.55 0.64 0.66

LD RMSE 7.03 - 13.08 - 12.26 -

(a) pre-LD and LD model performance in cross-validation.

Measure

Switzerland Beijing
Barmpadimos et al. [16] Zhang et al. [15]

PM10 PM2.5 [1-6h] PM2.5 [19-24h]
µg/m3 µg/m3 µg/m3

RMSE 2.60 17.35 – 25.81 26.88 – 44.08
R2 0.62 - -

(b) Comparison to related works.

TABLE III: pre-LD and LD model performance in cross-validation, comparison to related works.
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Fig. 3: Weather comparison for the lockdown periods in 2020 to the same period in 2019 in Switzerland, Beijing and Wuhan.

pollution predictor in these regions due to a strong pollution
transfer phenomenon [15]. The significant role of wind in the
Beijing and Wuhan models is also reflected in Table II by a
high number of the pre-LD GAM models where WS, WDx
and WDy were chosen as important explanatory variables by
the model selection algorithm.

To estimate pollution reduction during lockdowns, we lever-
age the pre-LD models trained on the pre-LD data as outlined
in Sec. IV, and use these to predict air pollution concentrations
over the lockdown periods. We then compute the difference
between the predicted and the actually measured values to
estimate the impact of the lockdown measures in each region.
Overall, the estimated NO2 change over the LD period com-
pared to the same time period in 2019 in Switzerland evaluates
to -29.4 %. For Beijing and Wuhan we estimate changes of -
28.1 % and -52.8 %, respectively.

Eastern Switzerland. Since NO2 is highly impacted by
traffic, we put the obtained NO2 reduction estimates in the
context of traffic reduction reported by Apple based on the
observed change in usage of its services. The Apple Mobility
Trends Report [47] publishes aggregated estimates of the
changed driving behavior of their users based on the navigation
requests. The data suggests an average reduction of driving

activity in Switzerland of 40.4 % compared to the baseline of
Jan 13, 2020. This traffic drop translated into a reduction of
NO2 between 78.4 % and 35.5 % for Low Traffic and High
Traffic stations respectively as predicted with our models,
when using the same baseline. Fig. 4 compares the output
of the pre-LD models to the observed values in 2019 and
2020 for these classes. For the station located off the road,
we find an increase of 15.1 %. In this case, the average NO2
is very low and its positive change can be regarded as marginal
and likely attributed to weather phenomena not captured by
our explanatory variables. A similar increase of 27.4 % was
reported by [8] for another rural station in Switzerland.

Beijing and Wuhan. We estimate an average NO2 reduc-
tion of -33.3%, and -64.1%, for Beijing and Wuhan for the
same period as reported in [11], respectively. The detailed
comparison for the traffic-based area breakdown is shown in
Table IV. We compare our weather-aware predictions to the
published results [11] obtained based on the analysis of the
satellite images over the lockdown period (see TROPOMI [11]
and OMI [11] in Table IV). Our NO2 reduction estimates
fall within the confidence intervals of the satellite imagery
based predictions. Sample predictions for the whole lockdown
period of Jan 23 to Apr 9, 2020 for urban and rural stations in
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Fig. 4: Sample predictions for NO2 for high (left) and low (right) traffic in Eastern Switzerland.
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Fig. 5: Sample predictions for NO2 for road (left) and rural (right) areas in Beijing, China.

(a)

(b) (c)

Fig. 6: Spatial distribution of NO2 reduction for (a) Switzer-
land, (b) Beijing and (c) Wuhan. Red means increasing and
blue means reduction in the plot.

Estimators
Beijing Wuhan

Urban Suburban Rural Road
% % % % %

pre-LD -33.3 -25.8 -37.4 -33.1 -64.1
TROPOMI [11] -25±10 -25±10 -25±10 -25±10 -43±14
OMI [11] -33±10 -33±10 -33±10 -33±10 -57±14

TABLE IV: Estimated NO2 reduction in Beijing and Wuhan
compared to [11] as measured by satellite imagery.

Beijing are exemplified in Fig. 5. Measured NO2 values are
significantly below pre-LD predictions.

We also provide a spatial distribution of the pollution
reductions over the lockdown period across all stations in our
data sets in Fig. 6. When comparing major cities under analysis
(Wuhan and Beijing in China; St. Gallen and Zurich in Eastern
Switzerland), we conclude that NO2 reductions were higher

in cities with stricter enforced intervention measures.

VI. LEARNING LOCKDOWN MODELS

The lockdown period gives us a bottom-line by how much
humans in different regions, given their cultural and political
differences, can reduce their activities in a fear of getting
infected by a virus. Having a bottom-line is useful when
evaluating future policy changes, sector restructuring due to
technological advances, process optimizations, etc. In this
section we describe the construction of the LD models by
transfer learning and show the value of both models in the
analysis of the post-lockdown period.

Transfer learning is a popular technique to apply the knowl-
edge gained by solving a particular task to a related task [35].
Since the lockdown period was too short to fit a GAM model
for this time period, we apply transfer learning to pre-LD
models to derive models for the lockdown period. In this step
we re-train the models on the scarce lockdown data to only
fit the variables where we suspect the dependencies may have
changed due to lockdown, i.e., the day of the week (D). These
variables serve as proxy for the traffic intensity. All weather
dependencies in the LD model are considered to be the same
as in the pre-LD model, which is confirmed by the domain
experts. The knowledge gained with regards to the influence of
the weather and seasonality on air pollution can be transferred
to the lockdown period. Thus, there is no need to train the
entire model from scratch.

A. Model Validation

Due to data scarcity over the lockdown period of only
several weeks, we test the performance of the LD model by
14-fold cross-validation by choosing 3 successive days within
6 weeks of initial lockdown as test data. The remaining data
from the lockdown period is used for training. This way, we
get 14 estimates for the out of sample prediction RMSE. The
summary of the average RMSE values for the lockdown model
can be found in Table III. In Eastern Switzerland, the LD
model closely matches the observed values. On average, the



Fig. 7: Contribution of the LD model (α in (2)), estimates of changes in driving from the Apple Mobility Report [47] and
estimated time spent at work places form the Google Community Mobility Report [48] compared to the report’s respective
baseline, for the time after the initial lockdown in Switzerland.
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Fig. 8: Contribution of the LD model (α in (2)) for the time after the first lockdown in Beijing.

LD models have a RMSE of 7.03 whereas the pre-LD models
have a RMSE of 7.16. This shows that the fine-tuned LD
model reflects well the dependency between air pollution and
explanatory variables for the short lockdown time period. For
Beijing and Wuhan, we obtain a RMSE of 13.08 and 12.26
for the LD models for both cities respectively, compared to
the RMSE of 13.38 and 14.61 of the pre-LD models. As next
we show that the LD model can indeed be useful to analyze
the impact of traffic reduction on air pollution.

B. Evaluation of the Post-Lockdown Period

We use both pre-LD and LD models to investigate the
optimal mixture thereof capable of explaining the observed
pollution values after the lockdown period. By doing so we
aim to estimate to what extent have human mobility and the
inherent traffic gone back to normal. To run this analysis, we
minimize the absolute sum of differences between the true
observations and the mixture of the pre-LD and LD model
predictions:

argmin
α

1

||T ||
∑
t∈T
|α ·mLD

t + (1− α) ·mpre-LD
t −mt|, (2)

where mt is the measured value at time t ∈ T , T is a post-
lockdown period of length ||T || under consideration, mLD

t

and mpre-LD
t are the predictions obtained with LD and pre-

LD models respectively. The dependent variable α shows
the contribution of the LD model when explaining the post-
lockdown pollution measurements. The results of this analysis
for NO2 in China and Switzerland are summarized below and
visualized in Fig. 7 and Fig. 8.
Eastern Switzerland. For Eastern Switzerland we analyze the
data after the initial lockdown, which covers the time period
between May 2020 and Feb 2021. The results in Fig. 7 show
that the first months following the initial lockdown are close to
the lockdown situation. Over summer the mobility gradually

resumes back to ∼50 % normal again. However from Oct
2020 onwards, we can again observe a considerable traffic
reduction due to mobility reducing measures put in place by
the Swiss government in response to rising numbers of COVID
cases [49]. From Dec 22, 2020 until the end of our dataset
(Feb 5, 2021), Switzerland has been put under a lockdown
again [50]. However, our model estimates a low reduction this
time (between 18 % and 24 %) for the traffic exposed stations.
The reason for this is only a limited decrease of traffic density:
According to the mobility estimates by Apple [47], driving in
Switzerland reduced by on average 40 % throughout the initial
lockdown in spring 2020, whereas during the second ongoing
lockdown, only a 15 % reduction has been observed.
Beijing. In Beijing the second lockdown was imposed between
June 15, 2020 and Sept 1, 2020. For this time period we
estimate a reduction in NO2 of 11 % for rural, 15 % for
urban, 7 % for suburban and 23 % for road stations. These
comparatively small reductions are to be expected as the
second lockdown hasn’t been nearly as strict as the first one.
As shown in Fig. 8, only in October, NO2 values came back
to their typical pre-COVID-19 levels in Beijing. Since Dec 29,
2020 a light, partial lockdown has been in place in some areas
of Beijing [51] which resulted in a sudden return to a level of
100% lockdown model contribution, as highlighted in Fig. 8.

VII. CONCLUSION AND DISCUSSION

This paper proposes an approach to estimate the impact
of the COVID-19 lockdown measures on local air quality
as measured by ground measurement stations. Related works
evaluate pollution reduction by comparing measured values to
the same period in 2019 or by the analysis of satellite imagery.
By contrast, our models learn a dependency between local air
quality and weather augmented by the daytime-specific dy-
namics impacted by traffic. We train long-term pre-LD models
using two years of historical data for the stations in Eastern



Switzerland and China and compare obtained predictions to
measured values over the lockdown. Our analysis and findings
match recent literature and show a significant decrease in NO2
in all areas.

Due to a short lockdown duration it is impossible to learn a
meaningful model for the lockdown period from scratch. We
use transfer learning to re-train only a subset of explanatory
variables on the scarce lockdown data. The resulting LD mod-
els provide a bottom-line for the pollution reduction in various
areas due to lockdown interventions. The model matches the
quality of the state-of-art air pollution models and can be used
in the analysis of the post-lockdown period.
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